Short cuts

Android Released Date features Activity Android Life Cycle Life Cycle of Activity ANDROID Version Micromax layout onCreate() onPause() onResume() onStart() Android 4.3 Android 4.3. Android One Android One smartphone Jelly Bean Life Cycle Moto X Nexus 7 Versions its Features latest Android 4.3 leak layout parameters onDestroy() onStop() 5G technology A new touchscreen display AT&T Android 4.4 KitKat release date Android. Apple Apple iPhone 5S Apple's iPhone 5 Battery CGL Canvas Nitro A310 smartphone HTC One Mini Huawei Technologies Layout Types Lenovo S5000 Mi3 Micromax Android One Moto 360 Moto G Moto G2 Online Payment Service SSC SSC CGL 2016 SSC CGL Apply online SSC CGL Notification SSC CGL important dates SSC CGL syllabus Samsung Samsung Tags:Galaxy Gear States T-Mobile Table Layout Tablets Verizon Visa Checkout Visa credit Wall Street Journal absolute layout airtel airtel entertainment android application development android gaming system android layouts android questions android rooting bundle debit cards developers facebook services finish() how to write android program iOS iPhone 5 identifying fingerprints indian developers installing interview questions on android for fresher iphone jailbreaking kitkat version libraries linear layout linux microsoft microsoft portal news note 8 pro nvidia online purchase operating system passport through smartphone redmi redmi note 8pro redmi note 8 redmi note 8 pro price redmi note8 pro specifiactions relative layout rooting run android application screen orientation smartwatch view

Sunday, 13 July 2014

Discover: Boron 'buckyball' discovered

Boron 'buckyball' discovered


Researchers have shown that clusters of 40 boron atoms form a molecular cage similar to the carbon buckyball. This is the first experimental evidence that such a boron cage structure exists. Credit: Wang lab / Brown University

The discovery 30 years ago of soccer-ball-shaped carbon molecules called buckyballs helped to spur an explosion of nanotechnology research. Now, there appears to be a new ball on the pitch.

Researchers from Brown University, Shanxi University and Tsinghua University in China have shown that a cluster of 40 boron atoms forms a hollow molecular cage similar to a carbon buckyball. It's the first experimental evidence that a boron cage structure—previously only a matter of speculation—does indeed exist.

"This is the first time that a boron cage has been observed experimentally," said Lai-Sheng Wang, a professor of chemistry at Brown who led the team that made the discovery. "As a chemist, finding new molecules and structures is always exciting. The fact that boron has the capacity to form this kind of structure is very interesting."

Wang and his colleagues describe the molecule, which they've dubbed borospherene, in the journal Nature Chemistry.

Carbon buckyballs are made of 60 carbon atoms arranged in pentagons and hexagons to form a sphere—like a soccer ball. Their discovery in 1985 was soon followed by discoveries of other hollow carbon structures including carbon nanotubes. Another famous carbon nanomaterial—a one-atom-thick sheet called graphene—followed shortly after.

After buckyballs, scientists wondered if other elements might form these odd hollow structures. One candidate was boron, carbon's neighbor on the periodic table. But because boron has one less electron than carbon, it can't form the same 60-atom structure found in the buckyball. The missing electrons would cause the cluster to collapse on itself. If a boron cage existed, it would have to have a different number of atoms.

Wang and his research group have been studying boron chemistry for years. In a paper published earlier this year, Wang and his colleagues showed that clusters of 36 boron atoms form one-atom-thick disks, which might be stitched together to form an analog to graphene, dubbed borophene. Wang's preliminary work suggested that there was also something special about boron clusters with 40 atoms. They seemed to be abnormally stable compared to other boron clusters. Figuring out what that 40-atom cluster actually looks like required a combination of experimental work and modeling using high-powered supercomputers.

source and read more at

http://phys.org/news/2014-07-boron-buckyball.html

No comments:

Post a Comment